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Drones!

High-resolution 
imagery 

Explore 
near-inaccessible 

areas

Low cost,
Flexible



Background - Existing Platforms



Background - Existing Platforms
GCS

High-Level Control

- Waypoints to cover
- Actions to take at 
   each waypoint

 



Question 1

What does autopilot do?

How it’s control is different from that of GCS?



Background - Existing Platforms
GCS

High-Level Control

- Waypoints to cover
- Actions to take at 
   each waypoint

 

Autopilot
Low-Level Control

Sensor inputs 
Accelerations, GPS

Operate actuators               
Electrical motors

       → Set 3D orientation 



Importance of Low-Level Control

Determines the effectiveness of physical motion

- Quality of photos/videos

Affects how the energy is consumed

- Drone’s lifetime is often a result of how efficient is its operation 



Autopilot in Time-Triggered Fashion

[Picture Credit: L. Mottola]



Question 2

How does time-triggered controller work?



Autopilot in Time-Triggered Fashion

Every T time units, probe sensors, compute control decisions, and deliver 

commands to the actuators.

[Picture Credit: L. Mottola]



Autopilot in Change-Triggered Fashion

[Picture Credit: L. Mottola]



Autopilot in Change-Triggered Fashion

[Picture Credit: L. Mottola]



Autopilot in Change-Triggered Fashion

REACTIVE

[Picture Credit: L. Mottola]



Motivation

Proportional component dominates
Similar sensor inputs results in similar output 
 → Maintain current setting for similar sensor input



Motivation

Autopilot runs on hardware closely resembles mobile phones
Energy-efficient high frequency sensors
Have interrupt-driven modes: generate a value upon verifying certain conditions



Autopilot in Change-Triggered Fashion

REACTIVE

[Picture Credit: L. Mottola]



Question 3

What are the benefits of reactive control? 



Benefits

1. Lessen the need to overprovision control rates
 Run the control logic only upon recognizing the need to

2. Improve hardware utilization
Spares unnecessary processing

3. Attain more timely control decisions
 If sensor inputs change often, control runs repeatedly



Statement

The efficiency of autopilot can be increased by executing control decisions only 
upon recognizing the need to, based on observed changes in the navigation sensors, 
that allows rate of execution dynamically adapt to the circumstances. 



Subproblems (Challenges)

1. What is a “significant” change in the sensor input?
- Difficult to generalize

Depends on accuracy of sensor hardware, the physical characteristics of the drone, the 

control logic, and the granularity of actuator output. 
2. Handling Interleaving of Triggers

- Triggered by different sensors, at different rates, asynchronously 
3. Implementation issue 

- Code quickly turns into a “callback hell” as the operation becomes inherently 
event-driven. 



Related Work

Event-based control (Astrom, 2007)

- Detect events → Generate control signal
- Control is not executed unless it is required

Difference:
- Different application
- Control logic is expressly redesigned
- Reactive control re-uses existing control logic



Autopilot in Change-Triggered Fashion

REACTIVE

[Picture Credit: L. Mottola]



Experimental Demonstration of Problem

Verifying that some iterations of 

the control loop are unnecessary

Measure: 

Output current of Electronic 

Speed Controllers (ESC) Autopilot



Experimental Demonstration of Problem

Verifying that some iterations of 

the control loop are unnecessary

Measure: 

Output current of Electronic 

Speed Controllers (ESC)

The less influence, the more the control 
decisions remain the same

    AC     Mild wind  Strong wind



P1. Recognizing Change Alters Control Logic

For each sensors, perform logistic regression

x : difference between consecutive samples

y: whether control decisions changed {0,1}

x

L(x)



P1. Recognizing Change Alters Control Logic

For each sensors, perform logistic regression

x : difference between consecutive samples

y: whether control decisions changed {0,1}

x

Whenever L(x)>Prun, 
execute control logic

Trigger

L(x)



Effect of Prun 



P1. Recognizing Change Alters Control Logic

● Runtime Operation

- For time Tboot, run in a time-triggered fashion for collecting data

- Estimate parameters for L(x)

- Perform reactive control

False positive/negative occurs

→ Add to data 

→ Re-estimate L(x)

x



P2. Handling Interleaving of Triggers

● How to handle multiple sensors triggers close in time

● Must consider the unlucky case of missing a large number of 

consecutive triggers



Question 4. 

● How to handle multiple sensors triggers close in time

● Must consider the unlucky case of missing a large number of 

consecutive triggers

How did authors solve this problem?



P2. Handling Interleaving of Triggers

● How to handle multiple sensors triggers close in time

● Must consider the unlucky case of missing many consecutive triggers

→ Sample every sensor at the highest frequency 
Major energy drain aboard the drones is anyways due to the motors

→ Failsafe
Execute control logic every Tfailsafe 

→ Hyperperiod
Wait before sampling of all sensors repeats
“Accumulates” all triggers possibly recognized on different sensors



In Action



P3. Implementaion - Callback Hell Problem

Two types of output:
- Immediately useful 
- Updating global status 

→ Every processing step need to execute upon 
recognizing change in inputs

→ Callback hell



P3. Implementaion - Callback Hell Problem

Solution 

Reactive Programming (Bainomugisha et al., 2013) 



Question 5. 

What is reactive programming?



P3. Implementaion - Callback Hell Problem

Solution 

Reactive Programming (Bainomugisha et al., 2013) 

- Declare data dependencies between variables
- Dependencies form acyclic graph
- Traverses the data dependency graph every time a data change occurs



Experimental Setup (1)

3x Drones, 3x Autopilots

[Picture Credit: L. Mottola]



Experimental Setup (Cont’)

18 different flight paths 
Each with 8 random waypoints
Repeat at least 3 times, until battery reaches 20%

3 Environments
Lab, Rugby, Arch

Parameters
Prun = 0.6, Tfailsafe = .1 sec, Tboot = 30 sec



Experimental Setup (Cont’)

Measure
- Attitude (motor output) error

Difference between the desired and actual attitude

- Flight time
   Until battery falls below a 20% threshold

 

    Autopilot          Recorded



Evaluation



Evaluation



Evaluation

3D Reconstruction (Structure from Motion)

30 target points to take pictures 

The less stable, the more blurry the image becomes

Result: 29% dense cloud than time-triggered control 



Evaluation



Evaluation



Closing thoughts - Pros

●  Exclusively works in software
no hardware modification is required.

● Demonstrate that reactive control is applicable beyond waypoint navigation
● Nice solution to callback hell problem
● Impressive experimental results 



Closing thoughts - Cons

● Has to do periodic sensing & periodic computation of control decisions at 
highest possible frequency. 

● Only execution of control logic is different from the time-triggered control
● Still dependent on time-triggered control (Failsafe)
● Very similar to event-based control 



Discussion & Questions



Gyro in the Air: Tracking 3D Orientation 
of Batteryless Internet-of-Things

Teng Wei and Xinyu Zhang



3D orientation using motion sensors (with batteries)
Output of the MEMS gyroscope: 3 
angular velocities around the Roll, Y 
aw, and Pitch axis in the phone 
body-frame.

image from “Use It Free: Instantly Knowing Your Phone Attitude”, by Pengfei Zhou, Mo Li, Guobin Shen



Passive orientation using computer vision

image from “Teaching Robots to Do Object Assembly Using Multi-MOdal 3D Vision”, by Weiwei Wan, Feng Lu, Zepei Wu, Kensuke Harada



Application of passive orientation sensing in IoT

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Passive orientation using RFID tag

RFID-Die: a tile switch 
controls whether the RFID 
tag response.

image from “RFID-Die: Battery-Free Orientation Sensing Using an Array of Passive Tilt Switches”, by L. Büthe, M. Hardegger, P. Brülisauer, G. Tröster



Tagyro
● Build connection between 2 DoFs rotation and phase;
● Compute orientation spectrum from real-time and theoretic phase;
● Extend 2 DoFs to 3 DoFs using 2 RFID tag arrays.



Backscatter communication

image from “Tagoram: Real-Time Tracking of Mobile RFID Tags to High Precision Using COTS Devices”, by L. Yang, Y. Chen, X.-Y. Li, C.Xiao, M.Li, Y.Liu



3D coordinate system

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Phases of two RFID tags



Orientation Spectrum

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Orientation Spectrum

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

How do they deal with grating lobes caused by spatial ambiguity?



Spatial ambiguity
● Antennas need to be separated by less than half-wavelength;

○ In Tagyro, a quarter, thus 8.2 cm for 915MHz;
● Search for top three peaks;
● Take the one that is closest to the previous one.



Challenges
● A RFID tag doesn’t act as an isotropic point;
● RFID tags affect each other when deployed in close range;
● The computation needs to know the layout.



The orientation of an RFID tag

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



The orientation of an RFID tag

How do they deal with this limitation?
image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



The blind direction of an RFID tag

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



The coupling effect of RFID tags

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



PDoA deviation over tag separation distance

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

8.2cm



The resonant signal

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



The resonant signal

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

What is the observation they make to simplify this situation?



Effective distance

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Effective distance

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

What is the observation they make about the bound of PDoA?



Array Layout Sensing (ALS) algorithm
● PDoA value is bounded within                                            ;
● Rotate tag array by more than one cycle round each axis;
● Phase unwrapping: PDoA change greater than    or smaller than       ;
● Map the tags’ pairwise effective distance to the entire tag array’s effective layout;

○ Classical Multi-Dimensional Scaling problem;
○ Approximate algorithm solve in               ;
○ Take first 3 dimensions.



ALS algorithm

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



How to get tag’s initial phase offset



How to get tag’s initial phase offset



Dual RFID tag arrays for 3-DoF orientation
● Orthogonal to each other;
● Also solve blind spot problem;
● 4 DoFs.

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Combo validator for blind direction problem
● At most one of the two arrays is in the blind direction (orthogonal);
● Set one array as blind when average RSS for tags is more than    smaller than the other;

○ 5dB based on measurements (conservative);

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



3D orientation
● Take first antenna’s coordinate system as primary;
●         reader i and array j;
●  

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Frequency-Hopping Readers
What is the problem?



Frequency-Hopping Readers
● Commercial UHF RFID readers must randonly hop to one of 50 center frequencies within 902-928 

MHz band every 200 ms, following FCC regulation;

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Initial phase measurement
● 10 seconds for all frequencies;
● Map to a common frequency (default 915.25 MHz).



Asynchronous Phase Reading
● The EPC Gen2 RFID standard reads the tags asynchronously;
● Assume the tag array’s rotation speed remains similar over consecutive phase readings.



Experiments
● RFID readers:

○ Impinj R420;
● RFID tags:

○ ALN-9740;
○ SMARTRAC DogBone;
○ SMARTRAC ShortDipole;
○ Read distance 15 - 20 ft;

● Software:
○ 3D GUI;
○ RFID library;
○ Processing algorithm.

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Evaluation

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Evaluation

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang



Other topic
● Multipath Effects;
● Coupling Effect from nearby metallic objects;
● Size of tags;
● Tracking orientation of multiple objects.

https://www.youtube.com/watch?v=sxTKrBZXP7k

https://www.youtube.com/watch?v=sxTKrBZXP7k
https://www.youtube.com/watch?v=sxTKrBZXP7k
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Background

• Active RF vs. Backscatter
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What is Active RF?
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So Passive?
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Comparison
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Background Cont’d

• Power consumption

• CMOS

• Voltage

• Capacitance

• Clock cycle

• Duty cycle
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Problem

• Communication and computation takes too 

much power when compared to sensor itself

10



So?

• Complete redesign the system so that the 

power consumption drop to the μW range.

11
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Existing System

• Sensor Data Acquisition

• Data Handling Subsystem

• Communication Subsystem

• Transmission Efficiency

• Summary
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Sensor Data Acquisition

• Two types:

• Sensor -> On-board ADC -> SPI/I2C -> Micro-

controller

• Sensor (analog) -> Micro-controller ADC

• Simple, Straight Forward.

• Yet not Efficient

14



Example
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One Perspective

16



Data Handling Subsystem

• Processes the acquired sensor data

• Formats and packetize it

• Sends the data to the network stack

17



Some Optimization

• Duty-cycled mode

• But fails when the rate is high

18



Direct Memory Access (DMA)

• Transfer data directly to memory without 

waking up the MCU

• What’s the Reality?

• Works at low rate

• Power consumption high with high rate

19



DMA cont’d

20



Communication Subsystem

• Includes different layers

• MCU needs to be on for processing messages 

if use software

• Hardware better?

• UART buffer needs to be filled with sensor 

data, wake up MCU or through DMA

• All in all, consumes a lot of power.

21



Transmission Efficiency

• Low clock utilization

• Software implemented

• EPC Gen 2 PHY-layer encoding

• EPC Gen 2 MAC layer not designed for high 

bandwidth data transfer

22



Summary

• Many operation involves MCU

• Hardware implementations (DMA, UART) 

does not solve the problem 

• Inefficient utilization of the clock cycle 

reduce the throughput

23



What To Do?

• Clean-slate redesign of a backscatter-based 

sensor platform

24
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Ekho Platform

• Minimalist design

26



No Computation!

• Use a FIFO buffer

• Why need the buffer?

• Deal with short delay

• Side benefit: No software

27



Simplified Communication

• Designed for sensor data only

• Reader informs each node of a timer, period, 

and a rate for transfer

• Only contains a timer and shift register

• No encoding

28



MAC Layer

• A high speed MAC layer for raw data transfer

• Design considerations?

• Bits/Joule

• Signal to Noise Ratio

• Utility of data

• Clock Drift

• Buffer size

29



Efficiency of Backscatter

30



SNR
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Mean Opinion Score (MOS)

32



Reader Design

• Select the optimal bit rate and slot size such 

that aggregate utility of received data is 

maximized

• Also aggregate energy consumption is 

minimized

• Subject to constraints on the buffer sizes, 

SNR, and guard bands

33



The Equation

34
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Implementation

• Hardware

• Software Defined Backscatter Reader

• MAC Layer Protocol

36



FPGA

• Sensing, data handling and communication 

subsystems

• Maximum size of the FIFO determined

• How big is the buffer?

• 32K bits (2KB)

37



Backscatter

• Existing systems unstable

• How they solved it?

• Use a small bias current for shaper edge

38



Reader

• Directly sent the data via OOK and no 

encoding

• Track the amplitude of the signal

39



MAC Layer

40
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Evaluation

• Power Consumption for Each Subsystem

• Power Consumption for Whole System

• Throughput

42



Sensing Subsystems
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Data Handling Subsystem
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Communication Subsystem
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Whole System

46
Accelerometer Sensor Audio Sensor



Throughput
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MOS Score
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Discussion

• FPGA is harder to work with

• Less power consumption for Ekho

• No encoding hurts

50
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Conclusion

• Enabler for new applications

• Low power consumption
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Personal Opinion

• Pros:

• Energy Efficient

• High throughput

• Cheaper for sensor

• Cons:

• No Encoding

• Firmware Update?

• Limited Throughput (also quality)

• Expensive reader

• Range

54
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• Proposed Solutions
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• The BlueEar
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• Discussion

2



INTRODUCTION
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Motivation

• Bluetooth is increasingly popular platform for wireless communication
• Particularly useful due to low power requirements and high bandwidth

• With increased popularity comes increased threat
• How secure is Bluetooth communication really?

• Complex encryption is ignored in favor of lower power draw

• Standard E0 encryption used between paired devices is susceptible to brute 
force attacks

• Nevertheless, implementation details of the communication scheme 
makes it difficult to passively intercept Bluetooth signals
• Existing methods are expensive and actively pair with a transmitter

• Can we cheaply and passively eavesdrop (sniff) a Bluetooth signal?

4



Challenges

• Bluetooth’s rapid channel switching makes it difficult to 
continuously monitor packet streams

• Additional adaptive channel hopping (due to bad 
channels) adds a layer of complexity to the existing 
switching patterns

• Without pairing to a transmitter, sniffing devices are highly 
susceptible to channel interference which reduces ability 
to intercept packets

5



Proposed Solutions

• Pattern matching

• Sit on a channel and watch the pattern of transmitted packets

• Match the packet pattern as a sliding window across all hopping 

phases

• Probabilistic matching

• To catch adaptive hops, choose a pattern with ≥95% confidence

• Subchannel classification

• Classify subchannels as good or bad to determine whether the 

transmitter will hop to them

• Selectively jam the bad channels to force the transmitter elsewhere

6



BLUETOOTH

7



How does Bluetooth work?

• Generally, Bluetooth devices transmit signals in the 2.402-

2.480 GHz spectrum

• This channel is further broken into 79 1MHz subchannels

(further specifying signal paths)

• The transmitter switches transmission subchannels every 

625µs (1,600 hops / second)

• Why perform the channel switching?

8



How does Bluetooth work?

• Bluetooth communication performed by pairing multiple 

Bluetooth capable devices

• Master-slave dynamic

• Resulting network called a piconet and specified by 

unique address

• Channel hopping is dictated as a function of the piconet

address and its clock

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑛𝑑𝑒𝑥 = 𝐻 𝐴, 𝑐

9



How does Bluetooth work?

• Bluetooth Classic uses 27-bit clock → 227 selection states, 

or phases

• Basic hopping sequence {𝑖1… 𝑖227−1} determined by 

hopping function, and phase is the current index of the 

sequence

• Is this a random pattern?

10



How does Bluetooth work?

• The world is a noisy place – most devices use adaptive 
channel hopping to avoid bad channels

• Channel quality classified by a subchannel map

• Bad ones get skipped if necessary

• Remap function (dependent on address and phase) determines 
where to go

• Device-dependent implementation

• Indiscoverable mode hides piconet address, clock, and 
subchannel map from unpaired devices

11



THE BLUEEAR
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System Overview

• Employ 2 Bluetooth radios, scout and snooper

• Scout surveys channel conditions

• Snooper tracks the target device

• Simple 3 step process to sniff packets

1. Filter packets corresponding to target device

2. Match clocks

3. Manipulate subchannel hopping

• Performing the clock matching is where it gets tricky

13



Clock Acquisition

• Without adaptive hopping, matching clocks is fairly trivial

14

Figure from paper



Clock Acquisition

• Adaptive hopping makes the problem trickier

15

Figure from paper

This packet would have 

normally been transmitted at 

channel 0, but was instead 

remapped to channel 2, 

throwing off our pattern 

matching on channel 2



Clock Acquisition

• What was the key observation the authors made that led to a 
probabilistic solution?

• Solution lies in observation that ratio of errors in pattern should equal 
ratio of remapped subchannels

• Bluetooth standard requires ≥20 subchannels for frequency hopping

• Remapped subchannels ratio upper bounded by 
59

79

• If 
𝑒𝑟𝑟𝑜𝑟𝑠

𝑝𝑎𝑐𝑘𝑒𝑡𝑠
>

59

79
, then the candidate clock is likely incorrect

• Using the Central-Limit Theory, clock can be determined with ≥95% 
accuracy as

𝑑𝑐
𝑛

− 2
𝜎

𝑛
≥
59

79

16

number of samples

number of mismatches 

for clock candidate c

sample standard 

deviation



Subchannel Classification

• Once clock is acquired, all packets theoretically should be 

able to be intercepted

• In practice, noise and interference in the channel can lead 

to missed packets

• BlueEar aims to identify which subchannels are good for 

listening in on

17



Subchannel Classification

• 3 types of subchannel classifiers evaluated

1. Packet-rate-based classifier

• Determine good/bad based on rate of all packets from target device 
through the channel

• Pros?

• Cons?

2. Spectrum-sensing-based classifier

• Determine good/bad based on interference statistics of the channel

• Pros?

• Cons?

3. Hybrid classifier

• Use both metrics to determine if a channel is good or bad

18



Subchannel Classification

• Hybrid classifier ultimately implemented in BlueEar

• Trains an SVM to classify subchannel quality

Training GT: Packet-based classifier output

Training Observations: Interference conditions of channel i as sampled 
by the scout

• Claims to learn the device’s classification model

• Outputs a log-likelihood confidence score 𝜆𝑖 = 𝑙𝑜𝑔
𝜌

1−𝜌𝑖
• Where is 𝝆𝒊, the probability that channel i is good, coming from?

• Is this a valid approach?

19



Selective Jamming

• BlueEar also manipulates the target 
device to go to channels conducive 
for eavesdropping

• Adds extra interference to 
subchannels classified as bad

• Adaptive hopping scheme skips bad 
subchannels and moves to a better 
subchannel for sniffing

20



IMPLEMENTATION
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Hardware

• 2 Ubertooths

• Hop selection

• Linux laptop

• Clock acquisition

• Subchannel classification

22



Ubertooth Firmware

• Each hardware component’s clock can skew, leading to 

drift error

• Scout and snooper tick 1 µs before target to avoid missing packets

• Snooper implements hop selection kernel

• Task scheduling is priority based

• Hop selection and subchannel switching are most important

23



PERFORMANCE
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Evaluations

• Tested on data and audio traffic
• Audio  playing an audio file transmitting to Bluetooth headset

• Data  Data file trasmission via Broadcom dongle

• Tested in office setting nearby 802.11 WLAN access points

• Check
• Synchronization delay

• Subchannel classification accuracy

• Packet capture rate

• Subchannel classification and packet capture rates in interference 
conditions

• Subchannel classification and packet capture rates in crowded 
spectrum

• Ambient interference conditions

25



Synchronization Delay

• 3 WLAN access points crowd channels

• Audio sniffing has longer clock acquisition delay than for 

data – lower packet rate for audio

• More interference, faster clock acquisition  Why?

26

Figure from paper



Fast-Varying Spectrum Context

• When subchannel map is modified frequently (i.e. 
interference conditions change a lot)

• Packet rate performs poorly  Why?

• Why does spectrum-sensing approach fare worse 
with audio?

27

Figure from paper



Packet Capture Rate

• Evaluates selective jamming usefulness

• Why does selective jamming improve capture rate?

28

Figure from paper



Interference Conditions

• Interference close to target, not much near scout 

(remember interference is spatially-dependent)

• Why such terrible performance from spectrum-

sensing approach?

29

Figure from paper



Interference Conditions

• Interference close to target, not much near scout 

(remember interference is spatially-dependent)

• Packet capture rate still very good for hybrid and packet-

rate methods

30

Figure from paper



Crowded Spectrum

• High channel use by 802.11 WLAN networks (causing 

“bad” subchannels)

• Still very good performance (low FP and FN rates)

31

Figure from paper



Ambient Interference

• Packet capture rate at varied locations in environment with 
ambient interfering sources

• Left image compares BlueEar to basic Ubertooth sniffer at 
different locations

• Right image shows that packet capture rate stays high even at 
long distances from target
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PRIVACY IMPLICATIONS
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Practical Evaluation

• Attempt to eavesdrop on speech conversation

• Tricky because audio streams highly susceptible to packet loss

• Experiment:

1. Collect real packet loss rates

• Remove lost packets from test audio stream

2. Establish piconet for speech streaming

3. Deploy BlueEar

4. Log all missed packets

• Evaluate using PSNR for stream quality
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Results

• PSNR maps to Mean Opinion Score (MOS) which 

described quality of signal

• 81% of sniffed stream scores higher than “fair” score
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Countermeasure

• These results are scary so far – say goodbye to privacy

• But wait! If we randomly mask the subchannel classifications 
by avoiding a “good” channel or knowingly hopping to a “bad” 
channel, we can break the learned adaptive hopping pattern.

• PSNR results degrade to “poor” in 95% of audio stream
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DISCUSSION
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Discussion

• Is the countermeasure practical? Is it easily 

circumvented as well?

• Are there any holes in the BlueEar device? Are there 

any practical situations that may arise that would 

render it useless?

• What sort of modifications to the Bluetooth system 

could prevent these attacks?
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