
Reactive Control of
Autonomous Drones

Hyo Jin Kim

Drones!

High-resolution
imagery

Explore
near-inaccessible

areas

Low cost,
Flexible

Background - Existing Platforms

Background - Existing Platforms
GCS

High-Level Control

- Waypoints to cover
- Actions to take at
 each waypoint

Question 1

What does autopilot do?

How it’s control is different from that of GCS?

Background - Existing Platforms
GCS

High-Level Control

- Waypoints to cover
- Actions to take at
 each waypoint

Autopilot
Low-Level Control

Sensor inputs
Accelerations, GPS

Operate actuators
Electrical motors

 → Set 3D orientation

Importance of Low-Level Control

Determines the effectiveness of physical motion

- Quality of photos/videos

Affects how the energy is consumed

- Drone’s lifetime is often a result of how efficient is its operation

Autopilot in Time-Triggered Fashion

[Picture Credit: L. Mottola]

Question 2

How does time-triggered controller work?

Autopilot in Time-Triggered Fashion

Every T time units, probe sensors, compute control decisions, and deliver

commands to the actuators.

[Picture Credit: L. Mottola]

Autopilot in Change-Triggered Fashion

[Picture Credit: L. Mottola]

Autopilot in Change-Triggered Fashion

[Picture Credit: L. Mottola]

Autopilot in Change-Triggered Fashion

REACTIVE

[Picture Credit: L. Mottola]

Motivation

Proportional component dominates
Similar sensor inputs results in similar output
 → Maintain current setting for similar sensor input

Motivation

Autopilot runs on hardware closely resembles mobile phones
Energy-efficient high frequency sensors
Have interrupt-driven modes: generate a value upon verifying certain conditions

Autopilot in Change-Triggered Fashion

REACTIVE

[Picture Credit: L. Mottola]

Question 3

What are the benefits of reactive control?

Benefits

1. Lessen the need to overprovision control rates
 Run the control logic only upon recognizing the need to

2. Improve hardware utilization
Spares unnecessary processing

3. Attain more timely control decisions
 If sensor inputs change often, control runs repeatedly

Statement

The efficiency of autopilot can be increased by executing control decisions only
upon recognizing the need to, based on observed changes in the navigation sensors,
that allows rate of execution dynamically adapt to the circumstances.

Subproblems (Challenges)

1. What is a “significant” change in the sensor input?
- Difficult to generalize

Depends on accuracy of sensor hardware, the physical characteristics of the drone, the

control logic, and the granularity of actuator output.
2. Handling Interleaving of Triggers

- Triggered by different sensors, at different rates, asynchronously
3. Implementation issue

- Code quickly turns into a “callback hell” as the operation becomes inherently
event-driven.

Related Work

Event-based control (Astrom, 2007)

- Detect events → Generate control signal
- Control is not executed unless it is required

Difference:
- Different application
- Control logic is expressly redesigned
- Reactive control re-uses existing control logic

Autopilot in Change-Triggered Fashion

REACTIVE

[Picture Credit: L. Mottola]

Experimental Demonstration of Problem

Verifying that some iterations of

the control loop are unnecessary

Measure:

Output current of Electronic

Speed Controllers (ESC) Autopilot

Experimental Demonstration of Problem

Verifying that some iterations of

the control loop are unnecessary

Measure:

Output current of Electronic

Speed Controllers (ESC)

The less influence, the more the control
decisions remain the same

 AC Mild wind Strong wind

P1. Recognizing Change Alters Control Logic

For each sensors, perform logistic regression

x : difference between consecutive samples

y: whether control decisions changed {0,1}

x

L(x)

P1. Recognizing Change Alters Control Logic

For each sensors, perform logistic regression

x : difference between consecutive samples

y: whether control decisions changed {0,1}

x

Whenever L(x)>Prun,
execute control logic

Trigger

L(x)

Effect of Prun

P1. Recognizing Change Alters Control Logic

● Runtime Operation

- For time Tboot, run in a time-triggered fashion for collecting data

- Estimate parameters for L(x)

- Perform reactive control

False positive/negative occurs

→ Add to data

→ Re-estimate L(x)

x

P2. Handling Interleaving of Triggers

● How to handle multiple sensors triggers close in time

● Must consider the unlucky case of missing a large number of

consecutive triggers

Question 4.

● How to handle multiple sensors triggers close in time

● Must consider the unlucky case of missing a large number of

consecutive triggers

How did authors solve this problem?

P2. Handling Interleaving of Triggers

● How to handle multiple sensors triggers close in time

● Must consider the unlucky case of missing many consecutive triggers

→ Sample every sensor at the highest frequency
Major energy drain aboard the drones is anyways due to the motors

→ Failsafe
Execute control logic every Tfailsafe

→ Hyperperiod
Wait before sampling of all sensors repeats
“Accumulates” all triggers possibly recognized on different sensors

In Action

P3. Implementaion - Callback Hell Problem

Two types of output:
- Immediately useful
- Updating global status

→ Every processing step need to execute upon
recognizing change in inputs

→ Callback hell

P3. Implementaion - Callback Hell Problem

Solution

Reactive Programming (Bainomugisha et al., 2013)

Question 5.

What is reactive programming?

P3. Implementaion - Callback Hell Problem

Solution

Reactive Programming (Bainomugisha et al., 2013)

- Declare data dependencies between variables
- Dependencies form acyclic graph
- Traverses the data dependency graph every time a data change occurs

Experimental Setup (1)

3x Drones, 3x Autopilots

[Picture Credit: L. Mottola]

Experimental Setup (Cont’)

18 different flight paths
Each with 8 random waypoints
Repeat at least 3 times, until battery reaches 20%

3 Environments
Lab, Rugby, Arch

Parameters
Prun = 0.6, Tfailsafe = .1 sec, Tboot = 30 sec

Experimental Setup (Cont’)

Measure
- Attitude (motor output) error

Difference between the desired and actual attitude

- Flight time
 Until battery falls below a 20% threshold

 Autopilot Recorded

Evaluation

Evaluation

Evaluation

3D Reconstruction (Structure from Motion)

30 target points to take pictures

The less stable, the more blurry the image becomes

Result: 29% dense cloud than time-triggered control

Evaluation

Evaluation

Closing thoughts - Pros

● Exclusively works in software
no hardware modification is required.

● Demonstrate that reactive control is applicable beyond waypoint navigation
● Nice solution to callback hell problem
● Impressive experimental results

Closing thoughts - Cons

● Has to do periodic sensing & periodic computation of control decisions at
highest possible frequency.

● Only execution of control logic is different from the time-triggered control
● Still dependent on time-triggered control (Failsafe)
● Very similar to event-based control

Discussion & Questions

Gyro in the Air: Tracking 3D Orientation
of Batteryless Internet-of-Things

Teng Wei and Xinyu Zhang

3D orientation using motion sensors (with batteries)
Output of the MEMS gyroscope: 3
angular velocities around the Roll, Y
aw, and Pitch axis in the phone
body-frame.

image from “Use It Free: Instantly Knowing Your Phone Attitude”, by Pengfei Zhou, Mo Li, Guobin Shen

Passive orientation using computer vision

image from “Teaching Robots to Do Object Assembly Using Multi-MOdal 3D Vision”, by Weiwei Wan, Feng Lu, Zepei Wu, Kensuke Harada

Application of passive orientation sensing in IoT

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Passive orientation using RFID tag

RFID-Die: a tile switch
controls whether the RFID
tag response.

image from “RFID-Die: Battery-Free Orientation Sensing Using an Array of Passive Tilt Switches”, by L. Büthe, M. Hardegger, P. Brülisauer, G. Tröster

Tagyro
● Build connection between 2 DoFs rotation and phase;
● Compute orientation spectrum from real-time and theoretic phase;
● Extend 2 DoFs to 3 DoFs using 2 RFID tag arrays.

Backscatter communication

image from “Tagoram: Real-Time Tracking of Mobile RFID Tags to High Precision Using COTS Devices”, by L. Yang, Y. Chen, X.-Y. Li, C.Xiao, M.Li, Y.Liu

3D coordinate system

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Phases of two RFID tags

Orientation Spectrum

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Orientation Spectrum

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

How do they deal with grating lobes caused by spatial ambiguity?

Spatial ambiguity
● Antennas need to be separated by less than half-wavelength;

○ In Tagyro, a quarter, thus 8.2 cm for 915MHz;
● Search for top three peaks;
● Take the one that is closest to the previous one.

Challenges
● A RFID tag doesn’t act as an isotropic point;
● RFID tags affect each other when deployed in close range;
● The computation needs to know the layout.

The orientation of an RFID tag

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

The orientation of an RFID tag

How do they deal with this limitation?
image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

The blind direction of an RFID tag

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

The coupling effect of RFID tags

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

PDoA deviation over tag separation distance

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

8.2cm

The resonant signal

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

The resonant signal

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

What is the observation they make to simplify this situation?

Effective distance

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Effective distance

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

What is the observation they make about the bound of PDoA?

Array Layout Sensing (ALS) algorithm
● PDoA value is bounded within ;
● Rotate tag array by more than one cycle round each axis;
● Phase unwrapping: PDoA change greater than or smaller than ;
● Map the tags’ pairwise effective distance to the entire tag array’s effective layout;

○ Classical Multi-Dimensional Scaling problem;
○ Approximate algorithm solve in ;
○ Take first 3 dimensions.

ALS algorithm

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

How to get tag’s initial phase offset

How to get tag’s initial phase offset

Dual RFID tag arrays for 3-DoF orientation
● Orthogonal to each other;
● Also solve blind spot problem;
● 4 DoFs.

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Combo validator for blind direction problem
● At most one of the two arrays is in the blind direction (orthogonal);
● Set one array as blind when average RSS for tags is more than smaller than the other;

○ 5dB based on measurements (conservative);

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

3D orientation
● Take first antenna’s coordinate system as primary;
● reader i and array j;
●

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Frequency-Hopping Readers
What is the problem?

Frequency-Hopping Readers
● Commercial UHF RFID readers must randonly hop to one of 50 center frequencies within 902-928

MHz band every 200 ms, following FCC regulation;

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Initial phase measurement
● 10 seconds for all frequencies;
● Map to a common frequency (default 915.25 MHz).

Asynchronous Phase Reading
● The EPC Gen2 RFID standard reads the tags asynchronously;
● Assume the tag array’s rotation speed remains similar over consecutive phase readings.

Experiments
● RFID readers:

○ Impinj R420;
● RFID tags:

○ ALN-9740;
○ SMARTRAC DogBone;
○ SMARTRAC ShortDipole;
○ Read distance 15 - 20 ft;

● Software:
○ 3D GUI;
○ RFID library;
○ Processing algorithm.

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Evaluation

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Evaluation

image from “Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things”, by Teng Wei, Xinyu Zhang

Other topic
● Multipath Effects;
● Coupling Effect from nearby metallic objects;
● Size of tags;
● Tracking orientation of multiple objects.

https://www.youtube.com/watch?v=sxTKrBZXP7k

https://www.youtube.com/watch?v=sxTKrBZXP7k
https://www.youtube.com/watch?v=sxTKrBZXP7k

EkhoNet: High Speed
Ultra Low-power
Backscatter for Next
Generation Sensors
COMP 790 Internet of Things

Shiwei Fang

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

2

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

3

Background

• Active RF vs. Backscatter

4

What is Active RF?

5

So Passive?

6

Comparison

7

Background Cont’d

• Power consumption

• CMOS

• Voltage

• Capacitance

• Clock cycle

• Duty cycle

8

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

9

Problem

• Communication and computation takes too

much power when compared to sensor itself

10

So?

• Complete redesign the system so that the

power consumption drop to the μW range.

11

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

12

Existing System

• Sensor Data Acquisition

• Data Handling Subsystem

• Communication Subsystem

• Transmission Efficiency

• Summary

13

Sensor Data Acquisition

• Two types:

• Sensor -> On-board ADC -> SPI/I2C -> Micro-

controller

• Sensor (analog) -> Micro-controller ADC

• Simple, Straight Forward.

• Yet not Efficient

14

Example

15

One Perspective

16

Data Handling Subsystem

• Processes the acquired sensor data

• Formats and packetize it

• Sends the data to the network stack

17

Some Optimization

• Duty-cycled mode

• But fails when the rate is high

18

Direct Memory Access (DMA)

• Transfer data directly to memory without

waking up the MCU

• What’s the Reality?

• Works at low rate

• Power consumption high with high rate

19

DMA cont’d

20

Communication Subsystem

• Includes different layers

• MCU needs to be on for processing messages

if use software

• Hardware better?

• UART buffer needs to be filled with sensor

data, wake up MCU or through DMA

• All in all, consumes a lot of power.

21

Transmission Efficiency

• Low clock utilization

• Software implemented

• EPC Gen 2 PHY-layer encoding

• EPC Gen 2 MAC layer not designed for high

bandwidth data transfer

22

Summary

• Many operation involves MCU

• Hardware implementations (DMA, UART)

does not solve the problem

• Inefficient utilization of the clock cycle

reduce the throughput

23

What To Do?

• Clean-slate redesign of a backscatter-based

sensor platform

24

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

25

Ekho Platform

• Minimalist design

26

No Computation!

• Use a FIFO buffer

• Why need the buffer?

• Deal with short delay

• Side benefit: No software

27

Simplified Communication

• Designed for sensor data only

• Reader informs each node of a timer, period,

and a rate for transfer

• Only contains a timer and shift register

• No encoding

28

MAC Layer

• A high speed MAC layer for raw data transfer

• Design considerations?

• Bits/Joule

• Signal to Noise Ratio

• Utility of data

• Clock Drift

• Buffer size

29

Efficiency of Backscatter

30

SNR

31

Mean Opinion Score (MOS)

32

Reader Design

• Select the optimal bit rate and slot size such

that aggregate utility of received data is

maximized

• Also aggregate energy consumption is

minimized

• Subject to constraints on the buffer sizes,

SNR, and guard bands

33

The Equation

34

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

35

Implementation

• Hardware

• Software Defined Backscatter Reader

• MAC Layer Protocol

36

FPGA

• Sensing, data handling and communication

subsystems

• Maximum size of the FIFO determined

• How big is the buffer?

• 32K bits (2KB)

37

Backscatter

• Existing systems unstable

• How they solved it?

• Use a small bias current for shaper edge

38

Reader

• Directly sent the data via OOK and no

encoding

• Track the amplitude of the signal

39

MAC Layer

40

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

41

Evaluation

• Power Consumption for Each Subsystem

• Power Consumption for Whole System

• Throughput

42

Sensing Subsystems

43

Data Handling Subsystem

44

Communication Subsystem

45

Whole System

46
Accelerometer Sensor Audio Sensor

Throughput

47

MOS Score

48

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

49

Discussion

• FPGA is harder to work with

• Less power consumption for Ekho

• No encoding hurts

50

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

51

Conclusion

• Enabler for new applications

• Low power consumption

52

Outline

• Background

• Problem

• Existing Systems

• Methods

• Implementation

• Evaluation

• Discussion

• Conclusion

• Personal Opinion

53

Personal Opinion

• Pros:

• Energy Efficient

• High throughput

• Cheaper for sensor

• Cons:

• No Encoding

• Firmware Update?

• Limited Throughput (also quality)

• Expensive reader

• Range

54

55

56

Ekonet: High Speed
Ultra Low-power
Backscatter for Next
Generation Sensors
COMP 790 Internet of Things

Shiwei Fang

PRACTICAL BLUETOOTH

TRAFFIC SNIFFING:
SYSTEMS AND PRIVACY IMPLICATIONS

Wahhab Albazrqaoe1,2, Jun Huang1, Guoliang Xing1

1 Department of Computer Science and Engineering, Michigan State University, USA
2 University of Karbala, Karbala City, Iraq

Presented by Marc Eder

COMP 790: Internet of Things

September 30, 2016

Overview

• Introduction

• Motivation

• Challenges

• Proposed Solutions

• Bluetooth

• The BlueEar

• System Overview

• Clock Acquisition

• Subchannel Classification

• Selective Jamming

• Implementation

• Performance

• Privacy Implications

• Discussion

2

INTRODUCTION

3

Motivation

• Bluetooth is increasingly popular platform for wireless communication
• Particularly useful due to low power requirements and high bandwidth

• With increased popularity comes increased threat
• How secure is Bluetooth communication really?

• Complex encryption is ignored in favor of lower power draw

• Standard E0 encryption used between paired devices is susceptible to brute
force attacks

• Nevertheless, implementation details of the communication scheme
makes it difficult to passively intercept Bluetooth signals
• Existing methods are expensive and actively pair with a transmitter

• Can we cheaply and passively eavesdrop (sniff) a Bluetooth signal?

4

Challenges

• Bluetooth’s rapid channel switching makes it difficult to
continuously monitor packet streams

• Additional adaptive channel hopping (due to bad
channels) adds a layer of complexity to the existing
switching patterns

• Without pairing to a transmitter, sniffing devices are highly
susceptible to channel interference which reduces ability
to intercept packets

5

Proposed Solutions

• Pattern matching

• Sit on a channel and watch the pattern of transmitted packets

• Match the packet pattern as a sliding window across all hopping

phases

• Probabilistic matching

• To catch adaptive hops, choose a pattern with ≥95% confidence

• Subchannel classification

• Classify subchannels as good or bad to determine whether the

transmitter will hop to them

• Selectively jam the bad channels to force the transmitter elsewhere

6

BLUETOOTH

7

How does Bluetooth work?

• Generally, Bluetooth devices transmit signals in the 2.402-

2.480 GHz spectrum

• This channel is further broken into 79 1MHz subchannels

(further specifying signal paths)

• The transmitter switches transmission subchannels every

625µs (1,600 hops / second)

• Why perform the channel switching?

8

How does Bluetooth work?

• Bluetooth communication performed by pairing multiple

Bluetooth capable devices

• Master-slave dynamic

• Resulting network called a piconet and specified by

unique address

• Channel hopping is dictated as a function of the piconet

address and its clock

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑛𝑑𝑒𝑥 = 𝐻 𝐴, 𝑐

9

How does Bluetooth work?

• Bluetooth Classic uses 27-bit clock → 227 selection states,

or phases

• Basic hopping sequence {𝑖1… 𝑖227−1} determined by

hopping function, and phase is the current index of the

sequence

• Is this a random pattern?

10

How does Bluetooth work?

• The world is a noisy place – most devices use adaptive
channel hopping to avoid bad channels

• Channel quality classified by a subchannel map

• Bad ones get skipped if necessary

• Remap function (dependent on address and phase) determines
where to go

• Device-dependent implementation

• Indiscoverable mode hides piconet address, clock, and
subchannel map from unpaired devices

11

THE BLUEEAR

12

System Overview

• Employ 2 Bluetooth radios, scout and snooper

• Scout surveys channel conditions

• Snooper tracks the target device

• Simple 3 step process to sniff packets

1. Filter packets corresponding to target device

2. Match clocks

3. Manipulate subchannel hopping

• Performing the clock matching is where it gets tricky

13

Clock Acquisition

• Without adaptive hopping, matching clocks is fairly trivial

14

Figure from paper

Clock Acquisition

• Adaptive hopping makes the problem trickier

15

Figure from paper

This packet would have

normally been transmitted at

channel 0, but was instead

remapped to channel 2,

throwing off our pattern

matching on channel 2

Clock Acquisition

• What was the key observation the authors made that led to a
probabilistic solution?

• Solution lies in observation that ratio of errors in pattern should equal
ratio of remapped subchannels

• Bluetooth standard requires ≥20 subchannels for frequency hopping

• Remapped subchannels ratio upper bounded by
59

79

• If
𝑒𝑟𝑟𝑜𝑟𝑠

𝑝𝑎𝑐𝑘𝑒𝑡𝑠
>

59

79
, then the candidate clock is likely incorrect

• Using the Central-Limit Theory, clock can be determined with ≥95%
accuracy as

𝑑𝑐
𝑛

− 2
𝜎

𝑛
≥
59

79

16

number of samples

number of mismatches

for clock candidate c

sample standard

deviation

Subchannel Classification

• Once clock is acquired, all packets theoretically should be

able to be intercepted

• In practice, noise and interference in the channel can lead

to missed packets

• BlueEar aims to identify which subchannels are good for

listening in on

17

Subchannel Classification

• 3 types of subchannel classifiers evaluated

1. Packet-rate-based classifier

• Determine good/bad based on rate of all packets from target device
through the channel

• Pros?

• Cons?

2. Spectrum-sensing-based classifier

• Determine good/bad based on interference statistics of the channel

• Pros?

• Cons?

3. Hybrid classifier

• Use both metrics to determine if a channel is good or bad

18

Subchannel Classification

• Hybrid classifier ultimately implemented in BlueEar

• Trains an SVM to classify subchannel quality

Training GT: Packet-based classifier output

Training Observations: Interference conditions of channel i as sampled
by the scout

• Claims to learn the device’s classification model

• Outputs a log-likelihood confidence score 𝜆𝑖 = 𝑙𝑜𝑔
𝜌

1−𝜌𝑖
• Where is 𝝆𝒊, the probability that channel i is good, coming from?

• Is this a valid approach?

19

Selective Jamming

• BlueEar also manipulates the target
device to go to channels conducive
for eavesdropping

• Adds extra interference to
subchannels classified as bad

• Adaptive hopping scheme skips bad
subchannels and moves to a better
subchannel for sniffing

20

IMPLEMENTATION

21

Hardware

• 2 Ubertooths

• Hop selection

• Linux laptop

• Clock acquisition

• Subchannel classification

22

Ubertooth Firmware

• Each hardware component’s clock can skew, leading to

drift error

• Scout and snooper tick 1 µs before target to avoid missing packets

• Snooper implements hop selection kernel

• Task scheduling is priority based

• Hop selection and subchannel switching are most important

23

PERFORMANCE

24

Evaluations

• Tested on data and audio traffic
• Audio  playing an audio file transmitting to Bluetooth headset

• Data  Data file trasmission via Broadcom dongle

• Tested in office setting nearby 802.11 WLAN access points

• Check
• Synchronization delay

• Subchannel classification accuracy

• Packet capture rate

• Subchannel classification and packet capture rates in interference
conditions

• Subchannel classification and packet capture rates in crowded
spectrum

• Ambient interference conditions

25

Synchronization Delay

• 3 WLAN access points crowd channels

• Audio sniffing has longer clock acquisition delay than for

data – lower packet rate for audio

• More interference, faster clock acquisition  Why?

26

Figure from paper

Fast-Varying Spectrum Context

• When subchannel map is modified frequently (i.e.
interference conditions change a lot)

• Packet rate performs poorly  Why?

• Why does spectrum-sensing approach fare worse
with audio?

27

Figure from paper

Packet Capture Rate

• Evaluates selective jamming usefulness

• Why does selective jamming improve capture rate?

28

Figure from paper

Interference Conditions

• Interference close to target, not much near scout

(remember interference is spatially-dependent)

• Why such terrible performance from spectrum-

sensing approach?

29

Figure from paper

Interference Conditions

• Interference close to target, not much near scout

(remember interference is spatially-dependent)

• Packet capture rate still very good for hybrid and packet-

rate methods

30

Figure from paper

Crowded Spectrum

• High channel use by 802.11 WLAN networks (causing

“bad” subchannels)

• Still very good performance (low FP and FN rates)

31

Figure from paper

Ambient Interference

• Packet capture rate at varied locations in environment with
ambient interfering sources

• Left image compares BlueEar to basic Ubertooth sniffer at
different locations

• Right image shows that packet capture rate stays high even at
long distances from target

32

Figure from paper

PRIVACY IMPLICATIONS

33

Practical Evaluation

• Attempt to eavesdrop on speech conversation

• Tricky because audio streams highly susceptible to packet loss

• Experiment:

1. Collect real packet loss rates

• Remove lost packets from test audio stream

2. Establish piconet for speech streaming

3. Deploy BlueEar

4. Log all missed packets

• Evaluate using PSNR for stream quality

34

Results

• PSNR maps to Mean Opinion Score (MOS) which

described quality of signal

• 81% of sniffed stream scores higher than “fair” score

35

Figure from paper

Countermeasure

• These results are scary so far – say goodbye to privacy

• But wait! If we randomly mask the subchannel classifications
by avoiding a “good” channel or knowingly hopping to a “bad”
channel, we can break the learned adaptive hopping pattern.

• PSNR results degrade to “poor” in 95% of audio stream

36

Figure from paper

DISCUSSION

37

Discussion

• Is the countermeasure practical? Is it easily

circumvented as well?

• Are there any holes in the BlueEar device? Are there

any practical situations that may arise that would

render it useless?

• What sort of modifications to the Bluetooth system

could prevent these attacks?

38

